NMR studies on the temperature-dependent dynamics of confined water.

نویسندگان

  • Matthias Sattig
  • Stefan Reutter
  • Franz Fujara
  • Mayke Werner
  • Gerd Buntkowsky
  • Michael Vogel
چکیده

We use (2)H NMR to study the rotational motion of supercooled water in silica pores of various diameters, specifically, in the MCM-41 materials C10, C12, and C14. Combination of spin-lattice relaxation, line-shape, and stimulated-echo analyses allows us to determine correlation times in very broad time and temperature ranges. For the studied pore diameters, 2.1-2.9 nm, we find two crossovers in the temperature-dependent correlation times of liquid water upon cooling. At 220-230 K, a first kink in the temperature dependence is accompanied by a solidification of a fraction of the confined water, implying that the observed crossover is due to a change from bulk-like to interface-dominated water dynamics, rather than to a liquid-liquid phase transition. Moreover, the results provide evidence that α process-like dynamics is probed above the crossover temperature, whereas β process-like dynamics is observed below. At 180-190 K, we find a second change of the temperature dependence, which resembles that reported for the β process of supercooled liquids during the glass transition, suggesting a value of Tg ≈ 185 K for interface-affected liquid water. In the high-temperature range, T > 225 K, the temperature dependence of water reorientation is weaker in the smaller C10 pores than in the larger C12 and C14 pores, where it is more bulk-like, indicating a significant effect of the silica confinement on the α process of water in the former 2.1 nm confinement. By contrast, the temperature dependence of water reorientation is largely independent of the confinement size and described by an Arrhenius law with an activation energy of Ea ≈ 0.5 eV in the low-temperature range, T < 180 K, revealing that the confinement size plays a minor role for the β process of water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multinuclear Variable Temperature NMR Studies on Cyanide, Water and Hydroxyl Group Scrambling on Halogenation of K2[Pt(CN)4] and Related Reactions

195Pt and 1H NMR has been used to show that addition of chlorine and bromine to [Pt(CN)4]2_ in presence of perchloric acid in water results in cyanide and water scrambling with formation of eleven complexes of the type [Pt(CN)4-nCl(H2O)n+1](n-1)+ (n=0, 1, 2, 3, 4). Addition of NBu4OH ...

متن کامل

Iterative Force-Field Calculation and Molecular Dynamics of Cyclooctanone

Body's iterative force-field computer program has been used to calculate strain energies in cyclooctanone (I). 348 MHZ 1H NMR spectra of (I) have been investigated over the temperature range of 25° to -160°C. Two conformation processes affect the 1H NMR spectrum of (I). Iterative force-field calculations on the conformations and conformational interconversion paths of ...

متن کامل

Water dynamics of LiCl solutions confined in nanopores

The self-diffusion of water in aqueous solutions of lithium chloride in bulk solutions and in these solutions confined to porous glass monoliths with bimodal pore structure has been studied by PFG NMR. The concentration dependent data for the bulk solutions are analyzed by the description of Sevrugin et al. [1], which yields information about the water dynamics within the ion’s hydration shell....

متن کامل

Temperature and Size Effects on Structural and Dynamical Properties of Water Confined in 1 - 10 nm-scale Pores Using Proton NMR Spectroscopy.

We were able to fill 1 - 10 nm-scale silica pores with water by vapor condensation, and examined the freezing phenomena, structures, and molecular motions of the confined water in the temperature range from 293 to 188 K by 1H-NMR spectroscopy. The results showed that almost all water molecules confined in 10 nm-scale pores were frozen and that approximately half of the water confined in 1 nm-sc...

متن کامل

Low-temperature dynamics of water confined in a hydrophobic mesoporous material.

Quasielastic neutron scattering was used to study the dynamics of three-dimensional confined water in a hydrophobic mesoporous material designated as CMK-1 in the temperature range from 250 to 170 K. We observe a crossover phenomenon at temperature T(L) . We find that T(L) of water confined in CMK-1 occurs in between previous observations of one-dimensional confined water in materials with diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 36  شماره 

صفحات  -

تاریخ انتشار 2014